Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Biol Macromol ; : 131547, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38641281

RESUMO

Eicosapentaenoic acid regulates glucose uptake in skeletal muscle and significantly affects whole-body energy metabolism. However, the underlying molecular mechanism remains unclear. Here we report that eicosapentaenoic acid activates phosphoglycerate mutase 2, which mediates the conversion of 2-phosphoglycerate into 3-phosphoglycerate. This enzyme plays a pivotal role in glycerol degradation, thereby facilitating the proliferation and differentiation of satellite cells in skeletal muscle. Interestingly, phosphoglycerate mutase 2 inhibits mitochondrial metabolism, promoting the formation of fast-type muscle fibers. Treatment with eicosapentaenoic acid and phosphoglycerate mutase 2 knockdown induced opposite transcriptomic changes, most of which were enriched in the PI3K-AKT signaling pathway. Phosphoglycerate mutase 2 activated the PI3K-AKT signaling pathway, which inhibited the phosphorylation of FOXO1, and, in turn, inhibited mitochondrial function and promoted the formation of fast-type muscle fibers. Our results suggest that eicosapentaenoic acid promotes skeletal muscle growth and regulates glucose metabolism by targeting phosphoglycerate mutase 2 and activating the PI3K/AKT signaling pathway.

2.
Int J Mol Sci ; 24(19)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37834313

RESUMO

CRISPR/Cas9-mediated cleavage of DNA, which depends on the endonuclease activity of Cas9, has been widely used for gene editing due to its excellent programmability and specificity. However, the changes to the DNA sequence that are mediated by CRISPR/Cas9 affect the structures and stability of the genome, which may affect the accuracy of results. Mutations in the RuvC and HNH regions of the Cas9 protein lead to the inactivation of Cas9 into dCas9 with no endonuclease activity. Despite the loss of endonuclease activity, dCas9 can still bind the DNA strand using guide RNA. Recently, proteins with active/inhibitory effects have been linked to the end of the dCas9 protein to form fusion proteins with transcriptional active/inhibitory effects, named CRISPRa and CRISPRi, respectively. These CRISPR tools mediate the transcription activity of protein-coding and non-coding genes by regulating the chromosomal modification states of target gene promoters, enhancers, and other functional elements. Here, we highlight the epigenetic mechanisms and applications of the common CRISPR/dCas9 tools, by which we hope to provide a reference for future related gene regulation, gene function, high-throughput target gene screening, and disease treatment.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Edição de Genes/métodos , Proteína 9 Associada à CRISPR/genética , Epigênese Genética , DNA
3.
BMC Genomics ; 24(1): 415, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488537

RESUMO

BACKGROUND: Skeletal muscle is the largest tissue in the body, and it affects motion, metabolism and homeostasis. Skeletal muscle development comprises myoblast proliferation, fusion and differentiation to form myotubes, which subsequently form mature muscle fibres. This process is strictly regulated by a series of molecular networks. Increasing evidence has shown that noncoding RNAs, especially microRNAs (miRNAs), play vital roles in regulating skeletal muscle growth. Here, we showed that miR-668-3p is highly expressed in skeletal muscle. METHODS: Proliferating and differentiated C2C12 cells were transfected with miR-668-3p mimics and/or inhibitor, and the mRNA and protein levels of its target gene were evaluated by RT‒qPCR and Western blotting analysis. The targeting of Appl1 by miR-668-3p was confirmed by dual luciferase assay. The interdependence of miR-668-3p and Appl1 was verified by cotransfection of C2C12 cells. RESULTS: Our data reveal that miR-668-3p can inhibit myoblast proliferation and myogenic differentiation. Phosphotyrosine interacting with PH domain and leucine zipper 1 (Appl1) is a target gene of miR-668-3p, and it can promote myoblast proliferation and differentiation by activating the p38 MAPK pathway. Furthermore, the inhibitory effect of miR-668-3p on myoblast cell proliferation and myogenic differentiation could be rescued by Appl1. CONCLUSION: Our results indicate a new mechanism by which the miR-668-3p/Appl1/p38 MAPK pathway regulates skeletal muscle development.


Assuntos
MicroRNAs , Linhagem Celular , Diferenciação Celular/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Mioblastos , Proliferação de Células/genética , Desenvolvimento Muscular/genética
4.
Anim Biotechnol ; 34(8): 3708-3717, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37149785

RESUMO

Intramuscular fat (IMF) positively influences various aspects of meat quality, while the subcutaneous fat (SF) has negative effect on carcass characteristics and fattening efficiency. Peroxisome proliferator-activated receptor gamma (PPARγ) is a key regulator of adipocyte differentiation, herein, through bioinformatic screen for the potential regulators of adipogenesis from two independent microarray datasets, we identified that PPARγ is a potentially regulator between porcine IMF and SF adipogenesis. Then we treated subcutaneous preadipocytes (SA) and intramuscular preadipocytes (IMA) of pig with RSG (1 µmol/L), and we found that RSG treatment promoted the differentiation of IMA via differentially activating PPARγ transcriptional activity. Besides, RSG treatment promoted apoptosis and lipolysis of SA. Meanwhile, by the treatment of conditioned medium, we excluded the possibility of indirect regulation of RSG from myocyte to adipocyte and proposed that AMPK may mediate the RSG-induced differential activation of PPARγ. Collectively, the RSG treatment promotes IMA adipogenesis, and advances SA lipolysis, this effect may be associated with AMPK-mediated PPARγ differential activation. Our data indicates that targeting PPARγ might be an effective strategy to promote intramuscular fat deposition while reduce subcutaneous fat mass of pig.


Assuntos
Adipogenia , PPAR gama , Suínos , Animais , Adipogenia/fisiologia , Rosiglitazona/farmacologia , PPAR gama/genética , Proteínas Quinases Ativadas por AMP/farmacologia , Adipócitos/fisiologia , Diferenciação Celular
5.
Yi Chuan ; 45(5): 435-446, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37194590

RESUMO

MicroRNAs (miRNAs) are a class of non-coding single-stranded RNA molecules about 22 nucleotides in length and are encoded by endogenous genes, and are involved in the regulation of post-transcriptional gene expression in animals and plants. Many studies have shown that microRNAs regulate the development of skeletal muscle, mainly manifested in the activation of muscle satellite cells and biological processes such as proliferation, differentiation, and formation of muscle tubes. In this study, miRNA sequencing screening of longissimus dorsi (LD, mainly fast-twitch fibers) and soleus muscle (Sol, dominated by slow-twitch fibers) identified the miR-196b-5p as a differentially expressed and highly conserved sequence in different skeletal muscles. Studies of miR-196b-5p in skeletal muscle have not been reported. In this study, miR-196b-5p mimics and inhibitor were used in miR-196b-5p overexpression and interference experiments in C2C12 cells. The effect of miR-196b-5p on myoblast proliferation and differentiation was analyzed by western blotting, real-time quantitative RT-PCR, flow cytometry, immunofluorescence staining, and the target gene of miR-196b-5p was identified by bioinformatics prediction and analyzed by dual luciferase reporter assays. The results showed that overexpression of miR-196b-5p could significantly increase the mRNA and protein expression of Cyclin B, Cyclin D and Cyclin E (P<0.05); Cell cycle analysis showed that overexpression of miR-196b-5p significantly increased the proportion of cells in the S phase (P<0.05), indicating that miR-196b-5p could accelerate cell cycle progress. Results of EdU staining showed that overexpression of miR-196b-5p significantly promoted cell proliferation. Conversely, inhibition of miR-196b-5p expression could significantly reduce the proliferation capacity of myoblasts. Further, overexpression of miR-196b-5p could significantly increase the expression levels of myogenic marker genes MyoD, MoyG and MyHC (P<0.05), thereby promoting myoblast fusion and accelerating C2C12 cell differentiation. Bioinformatics predictions and dual luciferase experiments demonstrated that miR-196b-5p could target and inhibit the expression of the Sirt1 gene. Altering the Sirt1 expression could not rescue the effects of miR-196b-5p on the cell cycle, but could weaken the promoting effects of miR-196b-5p on myoblast differentiation, suggesting that miR-196b-5p promoted myoblast differentiation by targeting Sirt1.


Assuntos
Diferenciação Celular , Proliferação de Células , Mioblastos , Animais , Camundongos , Linhagem Celular , MicroRNAs/genética , Mioblastos/citologia , Mioblastos/metabolismo
6.
J Zhejiang Univ Sci B ; 24(1): 1-14, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36632747

RESUMO

Skeletal muscle plays a paramount role in physical activity, metabolism, and energy balance, while its homeostasis is being challenged by multiple unfavorable factors such as injury, aging, or obesity. Exosomes, a subset of extracellular vesicles, are now recognized as essential mediators of intercellular communication, holding great clinical potential in the treatment of skeletal muscle diseases. Herein, we outline the recent research progress in exosomal isolation, characterization, and mechanism of action, and emphatically discuss current advances in exosomes derived from multiple organs and tissues, and engineered exosomes regarding the regulation of physiological and pathological development of skeletal muscle. These remarkable advances expand our understanding of myogenesis and muscle diseases. Meanwhile, the engineered exosome, as an endogenous nanocarrier combined with advanced design methodologies of biomolecules, will help to open up innovative therapeutic perspectives for the treatment of muscle diseases.


Assuntos
Exossomos , Exossomos/fisiologia , Músculo Esquelético/metabolismo , Comunicação Celular , Homeostase
7.
Br J Nutr ; 130(6): 966-977, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36539976

RESUMO

Homeostasis of gut microbiota is a critical contributor to growth and health in weaned piglets. Fish oil is widely reported to benefit health of mammals including preventing intestinal dysfunction, yet its protective effect during suckling-to-weaning transition in piglets remains undetermined. Low (30 g/d) and high (60 g/d) doses of n-3-rich fish oil were supplemented in sows from late gestation to lactation. Serum indicators and gut microbiota were determined to evaluate the effects of maternal fish oil on growth performance, immunity and diarrhea of piglets. DHA and EPA in the colostrum as well as serum of suckling and 1-week post-wean piglets were significantly and linearly increased by maternal supplementation of fish oil (P < 0.05). IGF1 and T3 in nursing and weaned piglets were significantly elevated by maternal fish oil (P < 0.05), and the increase of IGF1 was concerning the dosage of fish oil. Colostrum IgG, plasma IgG, IgM in suckling piglets, IgG, IgM and IgA in weaned piglets were significantly increase as maternal replenishment of fish oil increased (P < 0.05). Additionally, cortisol was significantly reduced in weaned pigs (P < 0.05), regardless of dosage. 16S rRNA sequencing revealed that α-diversity of fecal microbiota in nursery piglets, and fecal Lactobacillus genus, positively correlated with post-weaning IgA, was significantly increased by high dosage. Collectively, maternal fish oil during late pregnancy and lactation significantly promoted growth, enhanced immunity, and reduced post-weaning diarrhea in piglets, therefore facilitated suckling-to-weaning transition in piglets, which may be partially due to the altered gut microbial community.


Assuntos
Ácidos Graxos Ômega-3 , Microbiota , Gravidez , Suínos , Animais , Feminino , Óleos de Peixe/farmacologia , Dieta/veterinária , RNA Ribossômico 16S , Lactação , Suplementos Nutricionais/análise , Ácidos Graxos Ômega-3/farmacologia , Imunoglobulina G , Imunoglobulina A , Imunoglobulina M , Diarreia/prevenção & controle , Diarreia/veterinária , Ração Animal/análise , Mamíferos
8.
J Biol Chem ; 298(10): 102339, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35931121

RESUMO

Family with sequence similarity 83 A (FAM83A) is a newly discovered proto-oncogene that has been shown to play key roles in various cancers. However, the function of FAM83A in other physiological processes is not well known. Here, we report a novel function of FAM83A in adipocyte differentiation. We used an adipocyte-targeting fusion oligopeptide (FITC-ATS-9R) to deliver a FAM83A-sgRNA/Cas9 plasmid to knockdown Fam83a (ATS/sg-FAM83A) in white adipose tissue in mice, which resulted in reduced white adipose tissue mass, smaller adipocytes, and mitochondrial damage that was aggravated by a high-fat diet. In cultured 3T3-L1 adipocytes, we found loss or knockdown of Fam83a significantly repressed lipid droplet formation and downregulated the expression of lipogenic genes and proteins. Furthermore, inhibition of Fam83a decreased mitochondrial ATP production through blockage of the electron transport chain, associated with enhanced apoptosis. Mechanistically, we demonstrate FAM83A interacts with casein kinase 1 (CK1) and promotes the permeability of the mitochondrial outer membrane. Furthermore, loss of Fam83a in adipocytes hampered the formation of the TOM40 complex and impeded CK1-driven lipogenesis. Taken together, these results establish FAM83A as a critical regulator of mitochondria maintenance during adipogenesis.


Assuntos
Adipócitos Brancos , Adipogenia , Caseína Quinase I , Mitocôndrias , Proteínas de Neoplasias , Proto-Oncogenes , Animais , Camundongos , Células 3T3-L1 , Adipócitos Brancos/citologia , Adipócitos Brancos/metabolismo , Adipogenia/genética , Caseína Quinase I/metabolismo , Diferenciação Celular , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
9.
Biochem Cell Biol ; 100(4): 325-337, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35623098

RESUMO

The highly regulated proliferation of adipocytes plays a momentous role in fat development and obesity. Hoxa5 is an important member of the Hox family, its encoded protein is an important transcription factor related to development, and its differential expression in different adipose tissues seems to indicate that Hoxa5 may be involved in the regulation of adipocyte proliferation. To evaluate the regulatory mechanism of Hoxa5 on adipocyte proliferation, we constructed a variety of Hoxa5 expression vectors in vivo and in vitro to explore its mechanism on adipocyte proliferation and its potential impact on obesity. We observed that the overexpression of Hoxa5 strongly reduces cell counts and Hoxa5 can inhibit cell proliferation and block cell cycle progression by regulating the expression of genes such as Cyclin E, Cyclin D1, and p53. Most importantly, we demonstrated that Hoxa5 exerts its effect by regulating the signaling pathway of Janus kinase 2 (JAK2) signal transduction and transcription 3 (STAT3) activator, as well as binding to the promoter region of Ccne1 and inhibiting the transcription of Ccne1. This study provides an in-depth understanding of the potential molecular mechanism of Hoxa5 inhibiting adipocyte proliferation. Our results suggest the importance of Hoxa5 in the treatment of obesity.


Assuntos
Adipócitos , Ciclina E , Proteínas de Homeodomínio , Janus Quinase 2 , Fator de Transcrição STAT3 , Transdução de Sinais , Adipócitos/citologia , Animais , Proliferação de Células , Ciclina E/genética , Ciclina E/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Camundongos , Obesidade/genética , Obesidade/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Fatores de Transcrição/metabolismo
10.
Front Microbiol ; 13: 810230, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35369439

RESUMO

This study investigated the effects of Cordyceps militaris (CM) on intestinal barrier function and gut microbiota in a pig model. A total of 160 pigs were randomly allocated to either a control group (fed the basal diet) or a CM group (fed the basal diet supplemented with 300 mg/kg CM). CM improved intestinal morphology and increased the numbers of goblet cells and intraepithelial lymphocytes. CM also elevated the expression of zona occluden-1, claudin-1, mucin-2 and secretory immunoglobulin A. Furthermore, the mucosal levels of pro-inflammatory cytokines were downregulated while the levels of anti-inflammatory cytokines were upregulated in the CM group. Mechanistically, CM downregulated the expression of key proteins of the TLR4/MyD88/NF-κB signaling pathway. Moreover, CM altered the colonic microbial composition and increased the concentrations of acetate and butyrate. In conclusion, CM can modulate the intestinal barrier function and gut microbiota, which may provide a new strategy for improving intestinal health.

11.
Mol Genet Genomics ; 297(1): 87-99, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34786637

RESUMO

The type of myofiber is related to the quality of meat. The slow oxidized myofiber helps to increase the tenderness and juiciness of muscle. Numerous studies have shown that circRNA plays a key role in skeletal muscle development. However, the role of circRNA in porcine skeletal myofiber types is unclear. In this study, we performed high-throughput RNA sequencing to study the differential expression of circRNA in the longissimus dorsi and the soleus muscle. A total of 40,757 circRNAs were identified, of which 181 were significantly different. Interestingly, some circRNAs were involved in metabolism pathways, AMPK, FoxO, and PI3K-Akt signaling pathways. Besides, we focused on a novel circRNA-circMYLK4. By injecting circMYLK4-AAV into piglets, we found that circMYLK4 significantly increased the mRNA and protein levels of the slow muscle marker genes. In summary, our study laid an essential foundation for further research of circRNA in myofiber type conversion and higher meat quality.


Assuntos
Desenvolvimento Muscular/genética , Músculo Esquelético/crescimento & desenvolvimento , RNA Circular/fisiologia , Suínos , Animais , Animais Geneticamente Modificados , Diferenciação Celular/genética , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares de Contração Lenta/fisiologia , Músculo Esquelético/fisiologia , RNA Circular/análise , RNA Circular/genética , Suínos/genética , Suínos/crescimento & desenvolvimento
12.
Am J Physiol Cell Physiol ; 320(6): C1031-C1041, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33826407

RESUMO

The miR-129 family is widely reported as tumor repressors, although their roles in skeletal muscle have not been fully investigated. Here, the function and mechanism of miR-129-5p in skeletal muscle, a member of the miR-129 family, were explored using C2C12 cell line. Our study showed that miR-129-5p was widely detected in mouse tissues, with the highest expression in skeletal muscle. Gain- and loss-of-function study showed that miR-129-5p could negatively regulate myogenic differentiation, indicated by reduced ratio of MyHC-positive myofibers and repressed expression of myogenic genes, such as MyoD, MyoG, and MyHC. Furthermore, miR-129-5p was more enriched in fast extensor digitorum longus (EDL) than in slow soleus (SOL). Enhanced miR-129-5p could significantly reduce the expression of mitochondrial cox family, together with that of MyHC I, and knockdown of miR-129-5p conversely increased the expression of cox genes and MyHC I. Mechanistically, miR-129-5p directly targeted the 3'-UTR of Mef2a, which was suppressed by miR-129-5p agomir at both mRNA and protein levels in C2C12 cells. Moreover, overexpression of Mef2a could rescue the inhibitory effects of miR-129-5p on the expression of myogenic factors and MyHC I. Collectively, our data revealed that miR-129-5p is a negative regulator of myogenic differentiation and slow fiber gene expression, thus affecting body metabolic homeostasis.


Assuntos
Expressão Gênica/genética , MicroRNAs/genética , Desenvolvimento Muscular/genética , Regiões 3' não Traduzidas/genética , Animais , Diferenciação Celular/genética , Linhagem Celular , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/genética , Músculo Esquelético/fisiologia , Mioblastos/fisiologia , RNA Mensageiro/genética
13.
J Anim Physiol Anim Nutr (Berl) ; 105(4): 693-698, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32951263

RESUMO

The fermented feed has been identified as a potential alternative to antibiotics in feeds that markedly affects gut health and growth performance of pigs. Two recent studies performed in our laboratory investigated that the fermented corn-soybean meal (fermented feed, FF) improved the gut health of pigs. This study was conducted to determine the effect of a FF on the carcass, meat quality, muscle fatty acids profile, muscle amino acid and antioxidant ability of grower-finisher pigs. In this study, a total of 48 crossbred barrows (Duroc × Landrace × Large White) were randomly divided into 2 treatments with unfermented corn-soybean diet (Ctrl) and FF diet. Compared with control pigs fed a standard diet, the results showed that FF significantly increased the muscle colour of redness and significantly reduced muscle moisture loss rate. Furthermore, FF significantly increased the content of aromatic amino acids such as aspartic acid, glutamic acid and alanine. More importantly, FF increased monounsaturated fatty acid and polyunsaturated fatty acid content. Collectively, FF could be a promising feed strategy in improving meat quality and nutritional value in grower-finisher pig.


Assuntos
Ração Animal , Ração Animal/análise , Animais , Composição Corporal , Dieta/veterinária , Carne , Suínos , Zea mays
14.
Mol Ther Nucleic Acids ; 22: 722-732, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33230469

RESUMO

Skeletal muscle is an important metabolic organ of the body, and impaired skeletal muscle differentiation can result in a wide range of metabolic diseases. It has been shown that microRNAs (miRNAs) play an important role in skeletal muscle differentiation. The aim of this study was to investigate the role of mmu-miR-324-5p in the differentiation of C2C12 myoblasts and lipid droplet deposition in myotubes for future targeted therapies. We found that mmu-miR-324-5p was highly expressed in mouse skeletal muscle. Overexpression of miR-324-5p significantly inhibited C2C12 myoblast differentiation while promoting oleate-induced lipid accumulation and ß-oxidation in C2C12 myoblasts. Conversely, inhibition of mmu-miR-324-5p promoted C2C12 myoblast differentiation and inhibited lipid deposition in myotubes. Mechanistically, mmu-miR-324-5p negatively regulated the expression of long non-coding Dum (lncDum) and peptidase M20 domain containing 1 (Pm20d1) in C2C12 myoblasts. Reduced lncDum expression was associated with a significant decrease in the expression of myogenesis-related genes. Knockdown of mmu-miR-324-5p increased the levels of lncDum and myogenesis-related gene expression. Following oleate-induced lipid deposition in C2C12 myoblasts, overexpression of mmu-miR-324-5p decreased the expression of Pm20d1 while increasing the expression of mitochondrial ß-oxidation and long-chain fatty acid synthesis-related genes. In conclusion, we provide evidence that miR-324-5p inhibits C2C12 myoblast differentiation and promotes intramuscular lipid deposition by targeting lncDum and Pm20d1, respectively.

15.
Acta Biochim Biophys Sin (Shanghai) ; 52(11): 1227-1235, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33128541

RESUMO

miRNAs are a small class of noncoding RNAs that perform biological functions by regulating the stability or translation of target genes in various biological processes. This study illustrated the role of miR-10a-5p, which is relatively enriched in adipose tissues, using primary mouse preadipocytes as model. With elevated miR-10a-5p expression, the proliferative ability of mouse preadipocytes was significantly enhanced, indicated by increased EdU+ cells and G1/S transition, accompanied by upregulated Cyclin B, Cyclin D and PCNA and downregulated p21 and p27. Meanwhile, the adipogenic differentiation was significantly attenuated by elevated miR-10a-5p, supported by Oil Red O staining and suppressed PPARγ and aP2 expression. Furthermore, Map2k6 and Fasn were predicted to be the target genes of miR-10a-5p in silico, and dual luciferase reporter assay confirmed the direct targeting effects. Western blot analysis results showed that miR-10a-5p specially reduced Map2k6 expression at the proliferative stage without affecting Fasn expression, while significantly restrained Fasn expression with unchanged Map2k6 expression during adipogenic differentiation. Taken together, these results revealed a potential role of miR-10a-5p in adipogenesis and in the treatment of obesity.


Assuntos
Adipogenia/genética , Ácido Graxo Sintase Tipo I/metabolismo , MAP Quinase Quinase 6/metabolismo , MicroRNAs/biossíntese , MicroRNAs/genética , Tecido Adiposo/citologia , Tecido Adiposo/fisiologia , Animais , Ciclo Celular/genética , Diferenciação Celular/genética , Proliferação de Células/genética , Camundongos Endogâmicos C57BL , Cultura Primária de Células , Regulação para Cima
16.
Life Sci ; 258: 118240, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32781072

RESUMO

As a dicarboxylic acid with the structural formula HOOCCH (OH) COOH, tartronic acid is considered as an inhibitor of the transformation of carbohydrates into fat under fat-deficient diet conditions. However, the effect of tartronic acid on lipogenesis under high-fat diet conditions has yet to be established. In this work, we investigated the regulatory role of tartronic acid in lipogenesis in 3T3-L1 adipocytes and C57BL/6J mice. The results confirmed that tartronic acid promoted weight gain (without affecting food intake) and induced adipocyte hypertrophy in epididymal white adipose tissue and lipid accumulation in the livers of high-fat diet-induced obese mice. In vitro, tartronic acid promoted 3T3-L1 adipocyte differentiation by increasing the protein expression of FABP-4, PPARγ and SREBP-1. Moreover, the contents of both acetyl-CoA and malonyl-CoA were significantly upregulated by treatment with tartronic acid, while the protein expression of CPT-1ß were inhibited. In summary, we proved that tartronic acid promotes lipogenesis by serving as substrates for fatty acid synthesis and inhibiting CPT-1ß, providing a new perspective for the study of tartronic acid.


Assuntos
Acetilcoenzima A/biossíntese , Carnitina O-Palmitoiltransferase/antagonistas & inibidores , Lipogênese/efeitos dos fármacos , Malonil Coenzima A/biossíntese , Tartronatos/farmacologia , Regulação para Cima/efeitos dos fármacos , Células 3T3-L1 , Animais , Carnitina O-Palmitoiltransferase/metabolismo , Dieta Hiperlipídica/efeitos adversos , Lipogênese/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regulação para Cima/fisiologia
17.
J Anim Physiol Anim Nutr (Berl) ; 104(6): 1904-1911, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32856756

RESUMO

This study was conducted to evaluate effects of dietary Mulberry leaves on growth performance, carcass traits and meat quality in finishing pigs. Here, a total of 72 crossbred [(Landrace × Yorkshire) × Duroc] pigs with an average initial body weight of 70.03 ± 0.48 kg were used in this 45-day feeding trial. The pigs were randomly divided into three groups (6 pigs/pen and 4 replicates/group). Dietary treatments included a control diet (without any Mulberry leaves) and diets supplemented with 5% non- or fermented Mulberry leaf powder (MF or FMF respectively). The present findings indicated that compared with the control group, administration of MF or FMF significantly improved gain: feed ratio (p < .05) and reduced the backfat thickness (p < .05). Meanwhile, dietary MF and FMF significantly enhanced triglyceride deposition in Longissimus dorsi muscles (p < .05). Besides, both of MF and FMF could effectively improve the antioxidant capacity by increasing the content of T-AOC and SOD in serum and reduce the rancidity of pork. In conclusion, supplementary MF and FMF could promote gain: feed ratio, reduce backfat thickness, increase fat deposition in muscle and reduce the rancidity of pork.


Assuntos
Morus , Ração Animal/análise , Animais , Composição Corporal , Dieta/veterinária , Carne/análise , Folhas de Planta , Suínos
18.
Front Vet Sci ; 7: 246, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32656248

RESUMO

This study was conducted to determine the effect of a fermented corn-soybean meal [fermented feed (FF)] on the gene expression of immunity in the blood, the level of secretory immunoglobulin A (sIgA), and mucosa-associated bacterial community in the duodenum and colon of grower-finisher pigs. In this study, crossbred barrows (Duroc × Landrace × Large White) were randomly assigned to either an unfermented corn-soybean diet (Ctrl) (n = 6) or an FF diet (n = 6), and then the following were examined: the expression of immunity using real-time reverse transcription polymerase-chain reaction in the blood, sIgA using enzyme-linked immunosorbent assay (ELISA), and changes in the bacterial community using Illumina Hiseq sequencing in the mucosa of the duodenum and colon. Compared with control pigs fed with a standard diet, the results showed that FF caused upregulation of the mRNA expression of Toll-like receptor 3 (TLR3), TLR4, TLR6, and TLR8 in the blood (P < 0.05). Moreover, sequencing of 16S rRNA genes in duodenal mucosa samples indicated that the FF diet had a lower proportion of Tenericutes (P < 0.05) in the duodenal mucosa-associated microbiota, and FF significantly increased the percentage of Rikenellaceae and Christensenellaceae but decreased the abundance of Lachnospiraceae (P < 0.05) in the colonic mucosa-associated microbiota. The ELISA results showed that FF significantly increased the concentration of sIgA in the colonic mucosa (P < 0.05). More importantly, our correlation analysis indicated that the gene expression of immunity in the blood and the concentration of sIgA was associated with colonic mucosa-associated microbiota. Our data provide new knowledge into the adaptation response of the intestine to fermented feeding in monogastric animals.

19.
FASEB J ; 34(9): 12053-12071, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32729978

RESUMO

Obesity and related metabolic disorders are associated with intestinal microbiota dysbiosis, disrupted intestinal barrier, and chronic inflammation. Neohesperidin (Neo), a natural polyphenol abundant in citrus fruits, is known for its preventative and therapeutic effects on numerous diseases. Here, we report that Neo administration attenuates weight gain, low-grade inflammation, and insulin resistance in mice fed high-fat diet (HFD). Also, Neo administration substantially restores gut barrier damage, metabolic endotoxemia, and systemic inflammation. Sequencing of 16S rRNA genes in fecal samples revealed that Neo administration reverses HFD-induced intestinal microbiota dysbiosis: an increase in the diversity of gut microbiota and alteration in the composition of intestinal microbiota (particularly in the relative abundances of Bacteroidetes and Firmicutes). Furthermore, systemic antibiotic treatment abolishes the beneficial effects of Neo in body weight control, suggesting that the effect of Neo on obesity attenuation largely depends on the gut microbiota. More importantly, we demonstrate that the impact of Neo on the regulation of obesity could be transferred from Neo-treated mice to HFD-fed mice via fecal microbiota transplantation. Collectively, our data highlight the efficacy of Neo as a prebiotic agent for attenuating obesity, implying a potential mechanism for gut microbiota mediated the beneficial effect of Neo.


Assuntos
Bacteroidetes/crescimento & desenvolvimento , Dieta Hiperlipídica/efeitos adversos , Firmicutes/crescimento & desenvolvimento , Microbioma Gastrointestinal/efeitos dos fármacos , Hesperidina/análogos & derivados , Obesidade , Animais , Hesperidina/farmacologia , Masculino , Camundongos , Obesidade/induzido quimicamente , Obesidade/tratamento farmacológico , Obesidade/microbiologia
20.
Phytother Res ; 34(12): 3298-3310, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32614500

RESUMO

Lipolysis is an essential physiological activity of adipocytes. The Patatin Like Phospholipase Domain Containing 2 (PNPLA2) gene encodes the enzyme adipose triglyceride lipase (ATGL) responsible for triglyceride hydrolysis, the first step in lipolysis. In this study, we investigated the potential of triptolide (TP), a natural plant extract, to induce weight loss by examining its effect on ATGL expression. We found that long- and short-term TP administration reduced body weight and fat weight and increased heat production in brown adipose tissue in wild-type C57BL/6 mice. In 3T3-L1 fibroblasts and porcine adipocytes, TP treatment reduced the number of lipid droplets as determined by Oil Red O and BODIPY staining, with concomitant increases in free fatty acid and triglyceride levels in the culture medium. Combined treatment with TP and p53 inhibitor reversed these lipolytic effects. We next amplified the ATGL promoter region and identified conserved p53 binding sites in the sequence by in silico analysis. The results of the dual-luciferase reporter assay using a construct containing the ATGL promoter harboring the p53 binding site showed that p53 induces ATGL promoter activity and consequently, ATGL transcription. These results demonstrate that TP has therapeutic value as an anti-obesity agent and acts by promoting lipolysis via upregulation of p53 and ATGL transcription.


Assuntos
Adipócitos/efeitos dos fármacos , Diterpenos/uso terapêutico , Imunossupressores/uso terapêutico , Lipólise/efeitos dos fármacos , Fenantrenos/uso terapêutico , Proteína Supressora de Tumor p53/metabolismo , Animais , Diterpenos/farmacologia , Compostos de Epóxi/farmacologia , Compostos de Epóxi/uso terapêutico , Imunossupressores/farmacologia , Masculino , Camundongos , Fenantrenos/farmacologia , Suínos , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...